

Using Salinity Variance and Total Exchange Flow to Analyze Salinity Structure in an Unsteady Estuary

Dylan Schlichting^{1,2} Robert Hetland¹

Estuarine

10²

1. Texas A&M University, College Station, TX 77843; 2. University of Maine, Orono, ME 04469; dylan.schlichting@maine.edu

I. Background and Motivation

- Understanding salinity structure is important for estuarine management (population dynamics, material transport, etc.)
- ROMS was used to hindcast six years of salinity structure in Copano Bay: A shallow, unsteady estuary
- Quantitatively examine the relationship between salinity structure, river discharge, and exchange flow
- High river discharge results in large vertical salinity differences up to 15 g kg⁻¹ at boundaries

Figure 1: Study site location along the Gulf Coast with model grid and bathymetry

V. Comparison to Other Estuaries

- corresponds to large dot size
- Rayson et al. 2017 for Galveston Bay

- close to literature for unsteady estuaries
- Bay!

 Normalize salinity structure using total exchange flow

II. Salinity Variance

 $s'^2 = \left(s - \frac{1}{V}\right)$ Much variance No variance Fresh Mixed Salty

- Used as a metric for salinity structure
- Copano East has twice the salinity variance as Copano West

III. Total Exchange Flow (TEF) and the Salt Balance

60-

400

100 1

m_ 200

100

B)

- TEF describes the interaction of saltier, ocean water with less salty, estuary water
- Determine salt flux across an isohaline
- Used to normalize the salinity structure and compare to other estuaries

$$V\frac{d\bar{s}}{dt} + \frac{1}{V}\int_{V} s \, dV * \left(\frac{dV}{dt}\right) = Q_{in}S_{in} + Q_{out}S_{out}$$
$$\frac{dV}{dt} = Q_{in} + Q_{out} + Q_{r}$$

 The changes in salinity and volume are balanced out by salt flux at the mouth and the river discharge

Figure 3: Along-channel cross section of an idealized partially-mixed estuary. Q_{in}S_{in} and Q_{out}S_{out} represent the salt flux at the mouth, and Q_r is the river discharge. Salinity with higher variance enters the estuary at rate Q_{in} and Q_r . Mixing inherently destroys salinity variance (Macready et al. 2018).

400

200

VII. Discussion: Model Error

Figure 7: Comparison of modeled salinity vs moored salinity data and the difference between the two. Moored salinity data was obtained by averaging Copano East and Copano West data stations.

- Overestimation of salinity contributes to patterns displayed in
- Calculation of the unsteadiness parameter confirms
- What are the possible causes for the behavior seen in

Figure 4, but to an unknown extent

that Copano Bay behaves as an unsteady estuary

Copano Bay?

VIII. Conclusions

- High river discharge and the exchange flow are the primary forcing mechanisms in Copano Bay
- Normalized salinity patterns depart from the literature of other broad, shallow, unsteady estuaries
- Long adjustment time scales indicate that Copano Bay is highly unsteady

IX. Acknowledgements

We would like to thank Maine EPSCoR and Neal Pettigrew for helping provide funding so that the authors are able to present their research