

III. Advection scheme ensemble shows \mathcal{M}_{num} suppresses the release of APE by damping instabilities

- Three advection schemes: MPDATA, HSIMT, U3HC4
- Analysis tools: Eddy kinetic energy, available potential energy, isohaline & isopycnal variability
- Ensemble: 8 runs / scheme with variable 1% random bathymetry noise so ICs don't bias solution
- More developed eddies = more EKE, less APE, instabilities spread further offshore

 $u = \overline{u} + u', \ \overline{u} = \frac{1}{r} \mid u \, dx$ $EKE = 0.5(u'^2 + v'^2)$ ➤ Normalized by initial MKE $MKE = 0.5(\bar{u}^2 + \bar{v}^2)$ $APE = \rho_0 b'z \longrightarrow$ Normalized by initial values $b' = b - b_{ref}, \ b = -g (\rho_0 - \rho)/\rho_0$ <>=16 hour rolling mean, _____ensemble mean Tab. 1: Ensemble-averaged bulk mixing statistics integrated up to 97 km across-shore. Scheme $\mathcal{M}_{num}/\mathcal{M}_{tot}$ $\mathcal{M}_{phy}/\mathcal{M}_{tot}$ $\mathcal{M}_{num}/\mathcal{M}_{phy}$ 0.14 0.86 0.16 MPDATA U3HC4 0.17 0.83 0.21

0.66

0.50

0.34

HSIMT

Numerical mixing suppresses submesoscale baroclinic instabilities over sloping bathymetry

Dylan Schlichting^{1,2}, Robert Hetland^{1,3}, and Spencer Jones¹ 1. Department of Oceanography, Texas A&M University. 2. Los Alamos National Laboratory. 3. Pacific Northwest National Laboratory | <u>dylan.schlichting@tamu.edu</u>

Acknowledgements: Numerical simulations were performed using TAMU HPRC resources. This work was funded by the SUNRISE project, NSF Grant OCE-1851470.