

- $\mathcal{M}_{num} = (A\{s^2\} A\{s\}^2)/\Delta t$ (Burchard & Rennau, 2008), $\mathcal{M}_{phv} = 2K_v (\partial_z s)^2$ (Osborn & Cox, 1972)
- Idealized ROMS model based on Hetland (2017); 500 m horizontal resolution; 30 vertical layers
- z = 5 105 with 1% noise; $f = 43^{\circ}N$; $\kappa \epsilon$ turbulence closure; MPDATA for tracer advection; 20 day simulation; oscillatory winds of varying amplitude starting on day 5

How does numerical mixing impact larger scale flow and salinity field?

III. Oscillatory wind experiments help build intuition

Acknowledgements: Numerical simulations were performed using TAMU HPRC resources. This work was funded by the SUNRISE project, NSF Grant OCE-1851470.

Numerical mixing in idealized simulations of submesoscale baroclinic instabilities over a shelf Dylan Schlichting¹ and Robert Hetland^{1,2}

1. Department of Oceanography, Texas A&M University, College Station, TX. 2. Pacific Northwest National Laboratory | <u>dylan.schlichting@tamu.edu</u>

Scheme	$\mathcal{M}_{phy}/\mathcal{M}_{tot}$	$\mathcal{M}_{phy}/\mathcal{M}_{tot}$	$\mathcal{M}_{num}/\mathcal{M}_{phy}$
MPDATA	0.14	0.86	0.16
U3HC4	0.21	0.79	0.26
HSIMT	0.39	0.61	0.65

